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factors provide unique information about long-range

interaction between light-quarks and distribution of hadron’s

characterising properties amongst its QCD constituents.

Dynamical Chiral Symmetry Breaking (DCSB) is most

important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Running of quark mass entails that calculations at even

modest Q2 require a Poincaré-covariant approach. Covariance

requires existence of quark orbital angular momentum in

hadron’s rest-frame wave function.
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Spectrum of excited states, and elastic and transition form

factors provide unique information about long-range

interaction between light-quarks and distribution of hadron’s

characterising properties amongst its QCD constituents.

Dynamical Chiral Symmetry Breaking (DCSB) is most

important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons. Problem

because, e.g., DCSB - an established keystone of low-energy

QCD and the origin of constituent-quark masses - has not

been realised in the light-front formulation.
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QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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Dichotomy of Pion
– Goldstone Mode and Bound state

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2

π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.

Highly Nontrivial
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Relativistic QFT!

Minimal requirements

detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included

Interaction between quarks – the Interquark “Potential” –

unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction?
What is the

98% of the volume

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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Confinement

Infinitely Heavy Quarks . . . Picture in Quantum Mechanics

integration of the force-3 loops

bosonic string

V (r) = σ r − π

12

1

r

σ ∼ 470 MeV

Necco & Sommer

he-la/0108008
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Confinement

Illustrate this in terms of the action density . . . analogous to

plotting the Force = FQ̄Q(r) = σ +
π

12

1

r2

Bali, et al.

he-la/0512018
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What happens in the real world; namely, in the presence of

light-quarks? No one knows . . . but Q̄Q + 2 × q̄q

Bali, et al.

he-la/0512018

“The breaking of the string appears to be an instantaneous

process, with de-localized light quark pair creation.”

Therefore . . . No

information on potential

between light-quarks.
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What is the light-quark
Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in simulations of lattice-QCD is not related
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Charting the Interaction
between light-quarks

Confinement can be related to the analytic properties of

QCD’s Schwinger functions

Question of light-quark confinement can be translated into

the challenge of charting the infrared behavior of QCD’s

universal β-function

This function may depend on the scheme chosen to

renormalise the quantum field theory but it is unique

within a given scheme.

Of course, the behaviour of the β-function on the

perturbative domain is well known.

This is a well-posed problem whose solution is an elemental

goal of modern hadron physics.
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Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations of, e.g., hadron mass spectrum can be used to

chart β-function’s long-range behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

Steady quantitative progress is being made with a

scheme that is systematically improvable
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Charting the Interaction
between light-quarks

Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations of, e.g., hadron mass spectrum can be used to

chart β-function’s long-range behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

On other hand, at present significant qualitative

advances possible with symmetry-preserving kernel

Ansätze that express important additional

nonperturbative effects, difficult to capture in any finite

sum of contributions
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Dyson-Schwinger Equations

Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
2)
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Dyson-Schwinger Equations

Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Method yields Schwinger Functions ≡ Propagators
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Dyson-Schwinger Equations

Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions
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Perturbative
Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 12/52



First Contents Back Conclusion

Perturbative
Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 12/52



First Contents Back Conclusion

Perturbative
Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
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Perturbative
Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0
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Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0

No DCSB
Here!
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] m = 0 (Chiral limit)

m = 30 MeV
m = 70 MeV

effect of gluon cloud
Rapid acquisition of mass is

Mass from nothing.

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Frontiers of Nuclear Science:
Theoretical Advances

In QCD

a quark’s mass must depend on

its momentum
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Hadrons

• Established understanding of
two- and three-point functions

• What about bound states?
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• They appear as pole contributions to n ≥ 3-point
colour-singlet Schwinger functions
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?

or What is the long-range potential in QCD?
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

QFT Statement of Chiral Symmetry
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2
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5(k;P ) − iΓl
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Satisfies BSE Satisfies DSE

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 16/52



First Contents Back Conclusion

Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 16/52



First Contents Back Conclusion

Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)
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5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Nontrivial constraint
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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=
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Persistent Challenge

Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
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Persistent Challenge

Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

• Mass2 of pseudoscalar hadron
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

MH := trflavour

[

M (µ)

{

TH ,
(

TH
)t

}]

= mq1+mq2

• Sum of constituents’ current-quark masses

• e.g., TK+

= 1
2

(

λ4 + iλ5
)
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

fH pµ = Z2

∫ Λ

q

1
2tr

{

(

TH
)t

γ5γµ S(q+)ΓH(q;P )S(q−)
}

• Pseudovector projection of BS wave function at x = 0

• Pseudoscalar meson’s leptonic decay constant

i

i

i

i
Aµπ kµ

πf

k

Γ

S

(τ/2)γµ γ

S

5
55

=
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nu-th/9707003 )

fH m2
H = − ρH

ζ MH

iρH
ζ = Z4

∫ Λ

q

1
2tr

{

(

TH
)t

γ5 S(q+)ΓH(q;P )S(q−)
}

• Pseudoscalar projection of BS wave function at x = 0

i

i

i

i
P π   

πρ

k

Γ

S

(τ/2)  γ

S

5
55

=
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
−〈q̄q〉0ζ

f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary
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Radial Excitations
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fH m2
H = − ρH

ζ MH

Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
−〈q̄q〉0ζ

f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH

and ρH
ζ ∝ √

mH

Hence, mH ∝ mq

. . . QCD Proof of Potential Model result
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fH m2
H = − ρH

ζ MH

Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit
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ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit
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Radial Excitations
& Chiral SymmetryHöll, Krassnigg, Roberts

nu-th/0406030

fH m2
H = − ρH

ζ MH

Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.
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Radial Excitations
& Lattice-QCDMcNeile and Michael

he-la/0607032

When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194
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he-la/0607032
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)Craig Roberts: Dynamics of Chiral Symmetry Breaking
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f π’
/f

π
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Expt. bound

When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.Craig Roberts: Dynamics of Chiral Symmetry Breaking
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Pion Form Factor

Solve Gap Equation
⇒ Dressed-Quark Propagator, S(p)

Σ
=

D

γ
ΓS
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ

Solve Inhomogeneous Bethe-Salpeter Equation for
Dressed-Quark-Photon Vertex, Γµ
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)

Evaluate this final,
three-dimensional integral
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Data published
in 2001.
Subsequently
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Timelike Pion Form Factor

Ab initio calculation into
timelike region. Deeper than
ground-state ρ-meson pole
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Timelike Pion Form Factor
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Timelike Pion Form Factor
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QCDSF/UKQCD, monopole fit + error band

QCDSF/UKQCD, simulation result

Ab initio calculation into
timelike region. Deeper than
ground-state ρ-meson pole
ρ-meson not put in “by hand” – generated dynamically as a bound-
state of dressed-quark and dressed-antiquark
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Repeating Fπ(Q2) calculation
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005
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Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 25/52



First Contents Back Conclusion

Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Lattice results

– James Zanotti [UK QCD]
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Lattice results

– James Zanotti [UK QCD]

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.

We have understood this

Implications far-reaching.
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Goldberger-Treiman for pionMaris, Roberts, Tandy
nucl-th/9707003

• Pseudoscalar Bethe-Salpeter amplitude

Γπj (k;P ) = τπj

γ5

[

iEπ(k;P ) + γ · PF π(k;P )

+ γ · k k · P Gπ(k;P ) + σµν kµPν Hπ(k;P )
]
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• Pseudoscalar Bethe-Salpeter amplitude

Γπj (k;P ) = τπj

γ5

[

iEπ(k;P ) + γ · PF π(k;P )

+ γ · k k · P Gπ(k;P ) + σµν kµPν Hπ(k;P )
]

• Dressed-quark Propagator: S(p) =
1

iγ · pA(p2) + B(p2)
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Goldberger-Treiman for pionMaris, Roberts, Tandy
nucl-th/9707003

• Pseudoscalar Bethe-Salpeter amplitude

Γπj (k;P ) = τπj

γ5

[

iEπ(k;P ) + γ · PF π(k;P )

+ γ · k k · P Gπ(k;P ) + σµν kµPν Hπ(k;P )
]

• Dressed-quark Propagator: S(p) =
1

iγ · pA(p2) + B(p2)
• Axial-vector Ward-Takahashi identity

⇒ fπEπ(k;P = 0) = B(p2)
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Goldberger-Treiman for pionMaris, Roberts, Tandy
nucl-th/9707003

• Pseudoscalar Bethe-Salpeter amplitude

Γπj (k;P ) = τπj

γ5

[

iEπ(k;P ) + γ · PF π(k;P )

+ γ · k k · P Gπ(k;P ) + σµν kµPν Hπ(k;P )
]

• Dressed-quark Propagator: S(p) =
1

iγ · pA(p2) + B(p2)
• Axial-vector Ward-Takahashi identity

⇒ fπEπ(k;P = 0) = B(p2)

FR(k; 0) + 2 fπFπ(k; 0) = A(k2)

GR(k; 0) + 2 fπGπ(k; 0) = 2A′(k2)

HR(k; 0) + 2 fπHπ(k; 0) = 0
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Goldberger-Treiman for pionMaris, Roberts, Tandy
nucl-th/9707003

Pseudovector
components
necessarily
nonzero

• Pseudoscalar Bethe-Salpeter amplitude

Γπj (k;P ) = τπj

γ5

[

iEπ(k;P ) + γ · PF π(k;P )

+ γ · k k · P Gπ(k;P ) + σµν kµPν Hπ(k;P )
]

• Dressed-quark Propagator: S(p) =
1

iγ · pA(p2) + B(p2)
• Axial-vector Ward-Takahashi identity

⇒ fπEπ(k;P = 0) = B(p2)

FR(k; 0) + 2 fπFπ(k; 0) = A(k2)

GR(k; 0) + 2 fπGπ(k; 0) = 2A′(k2)

HR(k; 0) + 2 fπHπ(k; 0) = 0

Exact in

Chiral QCD

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 26/52



First Contents Back Conclusion

GT for pion
– QCD and F em

π (Q2)Maris, Roberts
nucl-th/9804062

What does this mean for observables?
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GT for pion
– QCD and F em

π (Q2)Maris, Roberts
nucl-th/9804062

What does this mean for observables?
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GT for pion
– QCD and F em

π (Q2)Maris, Roberts
nucl-th/9804062

What does this mean for observables?
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Pseudovector components dominate ultraviolet behaviour of

electromagnetic form factor Craig Roberts: Dynamics of Chiral Symmetry Breaking
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Gap Equation
General FormReturn to general bound-state problem . . .

To study the Poincaré covariant bound-state problem for

mesons, one must first solve the gap equation

Sf (p)−1 = Z2 (iγ · p + mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµSf (q)

λa

2
Γf

ν (q, p),

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 28/52



First Contents Back Conclusion

Gap Equation
General FormReturn to general bound-state problem . . .

To study the Poincaré covariant bound-state problem for

mesons, one must first solve the gap equation

Sf (p)−1 = Z2 (iγ · p + mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµSf (q)

λa

2
Γf

ν (q, p),

Dµν(k) is the dressed-gluon propagator;

Γf
ν (q, p) is the dressed-quark-gluon vertex;

mbm(Λ) is the Lagrangian current-quark bare mass;

Z1,2(ζ
2,Λ2) are respectively the vertex and quark wave

function renormalisation constants, with ζ the

renormalisation point.
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Bethe-Salpeter Equation
General Form

Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.
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Bethe-Salpeter Equation
General Form

Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.

Exact form:

Γfg
5µ(k;P ) = Z2γ5γµ −

∫

q

g2Dαβ(k − q)

×
λa

2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q

g2Dαβ(k − q)
λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),

Craig Roberts: Dynamics of Chiral Symmetry Breaking

JTI Workshop, 13-17 April 09 – Dynamics of Symmetry Breaking . . . 37 – p. 29/52



First Contents Back Conclusion

Bethe-Salpeter Equation
General Form

Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.

Exact form:

Γfg
5µ(k;P ) = Z2γ5γµ −

∫

q

g2Dαβ(k − q)

×
λa

2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q

g2Dαβ(k − q)
λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),

Λfg
5µβ is defined completely via the dressed-quark

self-energy and, owing to Poincaré covariance, one can

employ, e.g., q± = q±P/2, etc., without loss of generality
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

In any reliable study of light-quark hadrons, axial-vector

vertex must satisfy

PµΓfg
5µ(k;P ) = S−1

f (k+)iγ5 + iγ5S
−1
g (k−)

− i [mf (ζ) + mg(ζ)] Γfg
5 (k;P ) ,

expresses chiral symmetry & pattern by which it’s broken
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

In any reliable study of light-quark hadrons, axial-vector

vertex must satisfy

PµΓfg
5µ(k;P ) = S−1

f (k+)iγ5 + iγ5S
−1
g (k−)

− i [mf (ζ) + mg(ζ)] Γfg
5 (k;P ) ,

expresses chiral symmetry & pattern by which it’s broken

The condition (Λfg
5β pseudoscalar analogue of Λfg

5µβ)

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

NECESSARY & SUFFICIENT

to ensure Ward-Takahashi identity satisfied.
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

The condition (Λfg
5β pseudoscalar analogue of Λfg

5µβ)

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

NECESSARY & SUFFICIENT

to ensure Ward-Takahashi identity satisfied.

Rainbow-ladder . . .

Γf
β(q, k) = γµ

⇒ Λfg
5µβ(k, q;P ) = 0 = Λfg

5β(k, q;P )
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Solving the Kernel’s
Ward-Takahashi Identity

Ward-Takahashi identity is far more than merely a device for

checking a truncation’s consistency.
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checking a truncation’s consistency.

Remember vector-vertex Ward-Takahashi identity . . . long

been used to build Ansätze for the dressed-quark-photon

vertex
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Ward-Takahashi Identity

Ward-Takahashi identity is far more than merely a device for

checking a truncation’s consistency.

Remember vector-vertex Ward-Takahashi identity . . . long

been used to build Ansätze for the dressed-quark-photon

vertex

Kernel’s Ward-Takahashi identity provides means by which

to construct a symmetry preserving kernel of the

Bethe-Salpeter equation that is matched to any reasonable

Ansatz for the dressed-quark-gluon vertex
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Solving the Kernel’s
Ward-Takahashi Identity

Ward-Takahashi identity is far more than merely a device for

checking a truncation’s consistency.

Remember vector-vertex Ward-Takahashi identity . . . long

been used to build Ansätze for the dressed-quark-photon

vertex

Kernel’s Ward-Takahashi identity provides means by which

to construct a symmetry preserving kernel of the

Bethe-Salpeter equation that is matched to any reasonable

Ansatz for the dressed-quark-gluon vertex

With this powerful capacity they realise a longstanding goal.
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Solving the Kernel’s WTI
– IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Suppose that in the gap equation one employs an Ansatz

for the dressed-quark-gluon vertex which satisfies

PµiΓf
µ(k+, k−) = B(P 2)

[

S−1
f (k+) − S−1

f (k−)
]

(∗)

with B flavour-independent.
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Solving the Kernel’s WTI
– IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Suppose that in the gap equation one employs an Ansatz

for the dressed-quark-gluon vertex which satisfies

PµiΓf
µ(k+, k−) = B(P 2)

[

S−1
f (k+) − S−1

f (k−)
]

(∗)

with B flavour-independent.

NB. While true quark-gluon vertex doesn’t satisfy this

identity, owing to form of Slavnov-Taylor identity which it

does satisfy, it’s plausible that solution of Eq. (∗) can provide

reasonable pointwise approximation to true vertex.
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Solving the Kernel’s WTI
– IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Suppose that in the gap equation one employs an Ansatz

for the dressed-quark-gluon vertex which satisfies

PµiΓf
µ(k+, k−) = B(P 2)

[

S−1
f (k+) − S−1

f (k−)
]

(∗)

with B flavour-independent.

Given Eq. (∗), then Kernel’s WTI entails

Pµ(q − k)βiΛfg
5µβ(k, q;P ) =

PµB((k − q)2)
[

Γfg
5µ(q;P ) − Γfg

5µ(k;P )
]

,

(q − k)βiΛfg
5β(k, q;P ) =

B((k − q)2)
[

Γfg
5 (q;P ) − Γfg

5 (k;P )
]

. (#)
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Solving the Kernel’s WTI
– IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Solution to Eq. (#)

Λfg
5β(k, q;P ) := B((k − q)2) γ5 Λ

fg

β (k, q;P ) ,
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Solving the Kernel’s WTI
– IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Solution to Eq. (#)

Λfg
5β(k, q;P ) := B((k − q)2) γ5 Λ

fg

β (k, q;P ) ,

with (BC construction)

Λ
fg
β (k, q;P ) = 2ℓβ [i∆E5

(q, k;P ) + γ · P∆F5
(q, k;P )]

+γβ ΣG5
(q, k;P ) + 2ℓβ γ · ℓ∆G5

(q, k;P ) + [γβ , γ · P ]

×ΣH5
(q, k;P ) + 2ℓβ [γ · ℓ, γ · P ]∆H5

(q, k;P ) ,

ℓ = (q + k)/2

ΣΦ(q, k;P ) = [Φ(q;P ) + Φ(k;P )]/2

∆Φ(q, k;P ) = [Φ(q;P ) − Φ(k;P )]/[q2 − k2]
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At this point . . .

Began with Γµ(q, p), whose diagrammatic content is

unknown, but which expresses important additional

nonperturbative effects that are difficult to capture in any

finite sum of contributions
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Symmetry-preserving
AnsatzChang Lei & CDR, arXiv:0903.5461 [nucl-th]

At this point . . .

Began with Γµ(q, p), whose diagrammatic content is

unknown, but which expresses important additional

nonperturbative effects that are difficult to capture in any

finite sum of contributions

Given that Γµ(q, p) satisfies Eq. (∗), the equations which

follow provide symmetry-preserving closed system

whose solution yields predictions for the properties of

pseudoscalar mesons

This system and its predictions can smoothly be connected

with those obtained, e.g., in a rainbow-ladder or kindred

symmetry-preserving truncation of the DSEs.
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Symmetry-preserving
AnsatzChang Lei & CDR, arXiv:0903.5461 [nucl-th]

At this point . . .

Began with Γµ(q, p), whose diagrammatic content is

unknown, but which expresses important additional

nonperturbative effects that are difficult to capture in any

finite sum of contributions

Given that Γµ(q, p) satisfies Eq. (∗), the equations which

follow provide symmetry-preserving closed system

whose solution yields predictions for the properties of

pseudoscalar mesons

The system can be used to anticipate, elucidate and

understand the impact on hadron properties of the rich

nonperturbative structure expected of the fully-dressed

quark-gluon vertex in QCD
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rainbow-ladder cf. BC-consistent truncation

GMOR . . . plainly satisfied by both truncations

Added attraction in pseudoscalar channel

Added repulsion in scalar channel
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .
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∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

From this viewpoint scalar is a spin and orbital excitation of

a pseudoscalar meson
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Extant studies of realistic corrections to the rainbow-ladder

truncation show that they reduce hyperfine splitting
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Effect owes to influence of quark’s dynamically-enhanced

scalar self-energy in the Bethe-Salpeter kernel.

Impossible to demonstrate effect without our new procedure
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Expect this feature to have material impact on mesons with

mass greater than 1 GeV.

prima facie . . . can overcome longstanding shortcoming of

RL truncation; viz., splitting between vector & axial-vector

mesons is too small
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Expect this feature to have material impact on mesons with

mass greater than 1 GeV.

Promise of realistic meson spectroscopy

First time, also for mass > 1 GeV
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EpilogueDCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It predicts, amongst other things, that

light current-quarks become heavy

constituent-quarks: 4 → 400 MeV

pseudoscalar mesons are unnaturally

light: mρ = 770 cf. mπ = 140 MeV

pseudoscalar mesons couple unnaturally

strongly to light-quarks: gπq̄q ≈ 4.3

pseudscalar mesons couple unnaturally

strongly to the lightest baryons

gπN̄N ≈ 12.8 ≈ 3gπq̄q
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EpilogueDCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It predicts, amongst other things, that

light current-quarks become heavy

constituent-quarks: 4 → 400 MeV

pseudoscalar mesons are unnaturally

light: mρ = 770 cf. mπ = 140 MeV

pseudoscalar mesons couple unnaturally

strongly to light-quarks: gπq̄q ≈ 4.3

pseudscalar mesons couple unnaturally

strongly to the lightest baryons

gπN̄N ≈ 12.8 ≈ 3gπq̄q

It impacts dramatically upon observables.
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Epiloguenothing!

Dyson-Schwinger Equations

Poincaré covariant unification of meson and baryon

observables

All global and pointwise corollaries of DCSB are

manifested naturally without fine-tuning

Excited states:

Mesons already being studied

Baryons are within practical reach

Ab-initio study of N → ∆ transition underway

Tool enabling insight to be drawn from experiment into

long-range piece of interaction between light-quarks
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New Challenges

Next Steps . . . Applications to excited states and

axial-vector mesons, e.g., will improve understanding of

confinement interaction between light-quarks.

Move on to the problem of a symmetry preserving treatment

of hybrids and exotics.
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . most wide-ranging studies employ

expertise familiar from meson applications circa ∼1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . most wide-ranging studies employ

expertise familiar from meson applications circa ∼1995.

However, that is beginning to change . . .
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Nucleon . . .
Three-body Problem?

What is the picture in quantum field theory?

Three →

infinitely
many!
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In quantum field theory a nucleon appears as a pole in a six-

point quark Green function.

Residue is proportional to nucleon’s Faddeev amplitude

Poincaré covariant Faddeev equation sums all possible

exchanges and interactions that can take place between

three dressed-quarks
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Unifying Study
of Mesons and Baryons

How does one incorporate dressed-quark mass function,

M(p2), in study of baryons? Behaviour of M(p2) is es-

sentially a quantum field theoretical effect.

In quantum field theory a nucleon appears as a pole in a six-

point quark Green function.

Residue is proportional to nucleon’s Faddeev amplitude

Poincaré covariant Faddeev equation sums all possible

exchanges and interactions that can take place between

three dressed-quarks

Tractable equation is founded on observation that an

interaction which describes colour-singlet mesons also

generates quark-quark (diquark) correlations in the

colour-3̄ (antitriplet) channel
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Leading-order truncation of DSEs – rainbow-ladder

Corrections vanish with increasing current-quark mass

⇒ rainbow-ladder exact in heavy-quark limit

However, at physical light-quark mass, corrections to

observables not protected by symmetries: uniformly ≈ 35%

Roughly 50/50-split between nonresonant and resonant

(pseudoscalar meson loop) contributions

Symmetry preserving and systematic approach can

elucidate and account for these effects

Use this knowledge to constrain interaction in infrared

Interaction in ultraviolet predicted by perturbative

expansion of DSEs
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Prediction: at physical m2
π,

Mquark−core
N = 1.26(2) GeV

cf. FRR+lattice-QCD,

Mquark−core
N = 1.27(2) GeV

⇒ subleading corrections,

including 0−-meson loops,
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Parameter-free rainbow-ladder
Faddeev equation – result
qualitatively identical and in
semiquantitative agreement

Improved numerical algorithm
needed to extend calculation to
larger Q2

Calculation unifies π, ρ and nucleon properties – keystone

is behaviour of dressed-quark mass function and hence

veracious description of QCD’s Goldstone mode
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